ACEC Partnering Conference 2012

Truss Bridges of Kentucky

1899

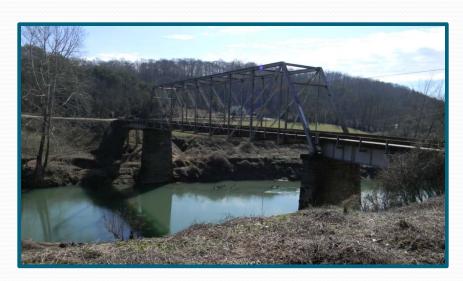
Amanda Abner Rebecca Turner

1893

Vincennes Bridge Company

Champion Bridge Company

Empire Bridge Company


Henry Lawrence Bridge 1934

Kennedy Bridge, 1964

Some types are very rare

- Whipple-Murphy- 3
- Parker Pony- 1
- Bedstead- 2
- Baltimore Through- 3
- Baltimore Deck- 1
- Bowstring- 2
- Pennsylvania Petit- 3
- Pratt Deck- 2

Circa 1890s Whipple Truss, Breathitt County

Garrett Bridge Floyd County

Methodology

The most important historic truss bridges in each District were identified based on:

- Truss Type/Rarity
- Best Examples of Type
- Association with Historic Bridge Companies
- Historic Setting/Historic District
- Integrity of Historic Elements
 (e.g., stone abutments, decorative features)
- Association with Other Historic Events (e.g., railroad, WPA)

ACEC Partnering Conference 2012 Interviews with District Bridge Engineers

Ted Grossardt Len O'Connell

Kentucky
Transportation Center

Objective of Interviews

- Identify major repairs/work needed to maintain bridge for 20 years
- Generate rough estimate of cost to preserve
- Obtain estimate of amount of effort to preserve the bridge on a scale of 1 (very little or no effort) to 10 (most difficult)
- Opinion regarding preservation or replacement
- Identification of functional issues related to the preservation effort (e.g., problems with approach, traffic issues)

Attributes of Bridges in Tables

Attribute	Explanation
Bridge Identification Number	A bridge with a B is state maintained; One with a C is county Maintained
Sufficiency Rating	From the NBI, ranging from o.o (closed) to 100 (condition new)
Year Built	Year said to be built; but may be year rehabilitated and not always accurate

Attributes of Bridges in Tables

Attribute	Explanation
Work Effort to Preserve	Ranges from very little or no effort (1) to most difficult (10)
Replace or Preserve	Engineer's opinion on bridge's preservation Potential
Historic Qualities	Lists some of the qualities that render the bridge of historic interest
Preserve but bridge presents significant functional issues (summary table only)	The bridge engineer said it could be preserved but mentioned significant obstacles that might stand in the way of preservation, such as traffic flow issues or cost greater than replacement
Cost to Preserve	This is a very rough estimate of the cost of preservation

District 3 Summary

ID	S.R.	Year Built	Work Effort	Replace or Preserve	Cost to Preserve	Historic Qualities	
071C23	25.0	1925	3.5	Preserve	\$600,000 with painting, \$80,000 without	Stone abutments, pin connections	
085C05	25.0	1911	2.5	Preserve	\$100,000	Camelback, Pin Connections	
114C07	16.5	1911	5.5	Preserve	\$500,000 to \$800,000	Pratt Half-hip Pony, Pin Connections, Stone abutments	
085C07	24.7	1921	9	Replace		Vincennes Bridge Co.	

Results by Sufficiency Rating Category

Sufficiency Rating Category	Number of Bridges	Opinion Preserve	Opinion Replace	Preserve w/ Functional Issues
0.0-9.99	6	2	2	2
10-19.99	14	3	5	6
20-29.99	16	9	3	4
30—39.99	7	2	2	3
40-49.99	16	16	o	O
50-59.99	7	6	O	1
60-69.99	2	2	o	O
70-79.99	4	3	1	O
80-89.99	O	О	o	O
90-100	О	O	O	o
Totals	72 (100%)	43 (59.7%)	13 (18.1%)	16 (22.2%)

Observations from the Districts

- Many of the truss bridges can be maintained/preserved
- Maintenance needs (esp. painting) are underfunded, aggravating deterioration rates
- A spot painting program and/or the use of marine grease may be needed
- More frequent joint repair/replacement to lengthen life of bridge

Barriers to Preservation

- Functional Issues Width, Approaches, Existing and Future Traffic Mix, Heavy Agricultural or Industrial use – some bridges simply don't meet the functional needs of the routes they serve.
- County Maintained Bridges County has little incentive to maintain. State will fix or replace if it gets too bad.
- Understanding Federal Funding.

Federal Bridge Preservation Program

- Federal Funding can be used to rehabilitate these bridges – even if they show up on the Highway Plan as "replace".
- A bridge is eligible for rehabilitation if it has a sufficiency rating below 80. It *is not required* to reach a post-rehabilitation SR of 80 to qualify for federal funding.
- The bridge must not have been federally funded for construction or restoration within the last ten years.

Federal Bridge Preservation Program

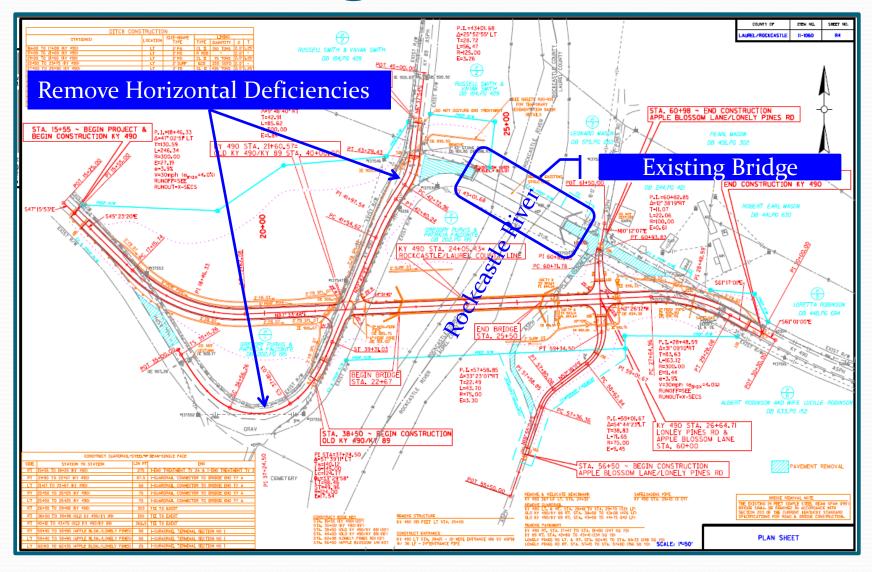
- The bridge must be rehabilitated "to maintain or upgrade its structural capacity to the present and anticipated future capacity needed for route traffic."
- The State Agency makes this determination.
- Kentucky: County Roads = 18 Tons
 State Routes = 22 Tons
 AAA Highway = 31 Tons
- If these targets cannot be met, the bridge *may* still remain in the system with a posted weight limit.

ACEC Partnering Conference 2012

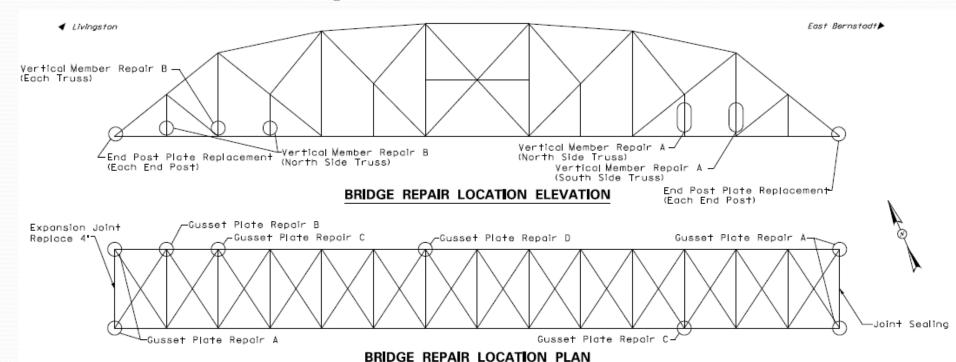
Historic Rockcastle River Bridge

Tom Matthews & Phil Logsdon

Rockcastle River Bridge


- KY 490 Rockcastle and Laurel Counties
- Rural Low Volume Road (200 ADT)
- Pennsylvania Petit Steel Truss
 - Constructed in 1921
 - 205' long, 18-20' wide
 - Sufficiency Rating = 38.7

Other Project Issues


- Only three Pennsylvania Petit Steel Truss bridges remain in Kentucky
- Outstanding Resource Water
- Endangered Mussels
- Sheltowee Trace National Recreation Trail
- 22-Mile detour
- 2006 Estimated replacement costs >\$1.8M

2006 Design

Issues Associated With Bridge

- 3-Ton Weight Limit
- Overall Condition Paint
- Vertical Member Repairs
- Gusset Plate Repairs
- End Post Plate Replacement

Alternative Costs

Replacement

Estimate = \$1.8M (ROW + Utilities + Construction)

Paint and Repair

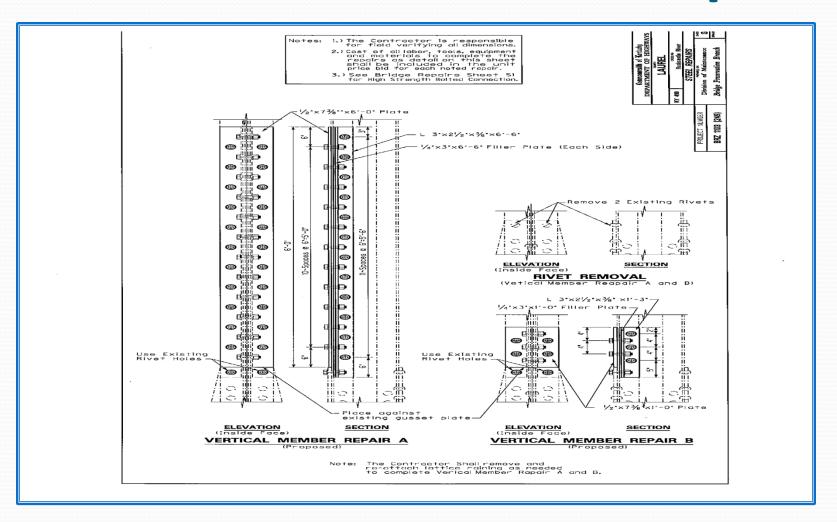
Engineer's Estimate = \$913K Four Bids = \$465K - \$696K Low Bid = \$465K

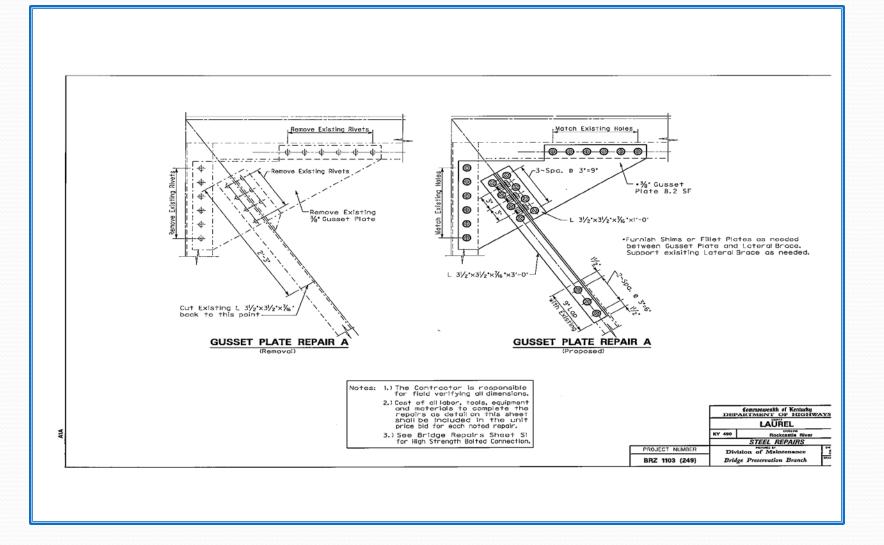
Rockcastle River Bridge

- Plans Developed In-House
- Let September 28, 2011
- \$465K Spartan Contractors
- Closed October 17-21
- Completed December 5, 2011

Existing Joints needed replacement 1~reseal, and 1~slide plate to 4" strip seal

Vertical member repairs - Section loss was the factor for the 3 ton weight posting.


Lateral Gusset Plate repairs - Several with excessive deterioration


End Post Plate repair - All 4 locations

Plan ~ vertical member repair

Plan ~ lateral gusset plate repair

Joint Reseal, Joint Replacement

Construction Vertical Member Repair

Construction Vertical Member Repair

ConstructionLateral Gusset Plate Repair



Construction Lateral Gusset Plate Repair

Construction: End Post Plate Repair.....Note new plate installed after painting

Cleaning, Painting

Cleaning, Painting

Containment Down finished product.....Note masonry coating on deck curb.

Finish ~ Vertical Member Repair

Finish ~ Lateral Gusset Plate Repair

Finish ~ End Post Repair

Completed Bridge

- 20+ year repair
- 15-Ton weight limit
- 5-Day Closure

- 2-months with 1-lane
- 75% Savings

Lessons Learned/Conclusions

- Very few historic truss bridges remain
- We need to get better at estimating rehabilitation costs
- Rehabilitation should be considered even for bridges identified for "replacement" in the highway plan
- "Right Sizing" a project may save overall project costs, including environmental costs
- District Bridge Engineers are interested in preserving and maintaining historic truss bridges
- Consider investing more in preventive maintenance